Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals.

نویسندگان

  • Elizaveta Krol
  • Anke Becker
چکیده

Quorum sensing (QS) using N-acyl homoserine lactones (AHLs) as signal molecules is a common strategy used by diverse Gram-negative bacteria. A widespread mechanism of AHL sensing involves binding of these molecules by cytosolic LuxR-type transcriptional regulators, which requires uptake of external AHLs. The outer membrane is supposed to be an efficient barrier for diffusion of long-chain AHLs. Here we report evidence that in Sinorhizobium meliloti, sensing of AHLs with acyl chains composed of 14 or more carbons is facilitated by the outer membrane protein FadLSm, a homolog of the Escherichia coli FadLEc long-chain fatty acid transporter. The effect of fadLSm on AHL sensing was more prominent for longer and more hydrophobic signal molecules. Using reporter gene fusions to QS target genes, we found that fadLSm increased AHL sensitivity and accelerated the course of QS. In contrast to FadLEc, FadLSm did not support uptake of oleic acid, but did contribute to growth on palmitoleic acid. FadLSm homologs from related symbiotic α-rhizobia and the plant pathogen Agrobacterium tumefaciens differed in their ability to facilitate long-chain AHL sensing or to support growth on oleic acid. FadLAt was found to be ineffective toward long-chain AHLs. We obtained evidence that the predicted extracellular loop 5 of FadLSm and further α-rhizobial FadL proteins contains determinants of specificity to long-chain AHLs. Replacement of a part of loop 5 by the corresponding region from α-rhizobial FadL proteins transferred sensitivity for long-chain AHLs to FadLAt.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo evidence that S-adenosylmethionine and fatty acid synthesis intermediates are the substrates for the LuxI family of autoinducer synthases.

Many gram-negative bacteria synthesize N-acyl homoserine lactone autoinducer molecules as quorum-sensing signals which act as cell density-dependent regulators of gene expression. We have investigated the in vivo source of the acyl chain and homoserine lactone components of the autoinducer synthesized by the LuxI homolog, TraI. In Escherichia coli, synthesis of N-(3-oxooctanoyl)homoserine lacto...

متن کامل

Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum.

Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs,...

متن کامل

Biochemical Detection of N-Acyl Homoserine Lactone from Biofilm-Forming Uropathogenic Escherichia coli Isolated from Urinary Tract Infection Samples

Background: N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming...

متن کامل

Long Chain N-acyl Homoserine Lactone Production by Enterobacter sp. Isolated from Human Tongue Surfaces

We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis o...

متن کامل

Crystal structure of the long-chain fatty acid transporter FadL.

The mechanisms by which hydrophobic molecules, such as long-chain fatty acids, enter cells are poorly understood. In Gram-negative bacteria, the lipopolysaccharide layer in the outer membrane is an efficient barrier for fatty acids and aromatic hydrocarbons destined for biodegradation. We report crystal structures of the long-chain fatty acid transporter FadL from Escherichia coli at 2.6 and 2....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 29  شماره 

صفحات  -

تاریخ انتشار 2014